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INTRODUCTION 
Asphalt (or bitumen) is one of the earliest construction materials used by mankind. However, 
despite the long history of its use and the important role it plays at the present time, in the 
construction of pavements, the composition and especially the structure of asphalt is still not 
fully understood. It is generally believed that asphalt is a multiphasc system in which the large 
and polar molecules called asphaltenes, or their agglomerates are dispersed in the medium 
consisting of the smaller molecules with low or no polarity. Opinions on how the asphalt 
structure is arranged vary (1, 2, 3). The study of asphalt structure is made extremely difficult by 
the nature of this material. Non-invasive methods such as dynamic mechanical or electric 
testing, which investigate the asphalt in its original state may greatly contribute to our knowledge 
of the asphalt internal structure. 

STRETCHED EXPONENTIAL RELAXATION 
Around 1835, in Gottingen, Wilhelm Weber made the first systematic investigation of elastic 
“after-effect” in silk and glass threads (4). He noted that a weight suspended from such fibres 
generates an instantaneous elongation followed by an additional time dependent strain which 
recovered when the load was removed. For the dependence of displacement x on time t, Weber 
used a power law. The problem of after effect (creep in modem terminology) has been further 
studied by Rudolf Kohlrausch. He noticed the analogy with time dependent electric 
displacements, q. in charged capacitors and proposed for this effect the stretched exponential 
law: q(t) = qo + exp(-(t/h)=). In 1863 Frederick Kohlrausch (5) (the son of RudolQ used the 
stretched exponential as an empirical fit for creep and relaxation data in silk and glass fibres and 
in rubber. The stretched exponential law has been revived after more than one hundred years in 
the study of dielectric relaxation. Usually the analysis of dielectric relaxation in polymers is 
focused on the complex dielectric “constant” E’(o) and its deviation from the form derived from 
a single relaxation time (6) .  A change of interest from frequency to time, i.e. from E* to the 
relaxation fuhction $(t) has been generated by the work of G. Williams and D. Watts (7). They 
found that the stretched exponential can fit data for many glassy and polymeric materials. In the 
past decade this form has been used to fit a wide variety of experimental data, dielectric, 
enthalpic, dynamic light scattering, magnetic relaxation, reaction kinetics, etc. (8). The 
possibility to use the stretched exponential in regular and polymer modified asphalts is discussed 
in the next paragraph. 
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STRETCHED EXPONENTIAL AND DYNAMIC MATERIAL FUNCTIONS 
As usually we assume that for small deformations, the general linear viscoelastic constitutive 
equation is valid, i.e. 

f t 

T(t) = 5 - M(t - t‘) - y (t , t’)dt ‘ = jG(t  - t’) - i. (t , t’)dt‘ 1) - 
Here, M(t-t’) = M(s) = -dG(s)/ds; M represents the fluid memory, and G is the relaxation 
modulus (relaxation function). Extra stress tensor is related to the strain tensor y , or to the 

rate of strain tensor i. via 1). In the case of small amplitude oscillatory shear motion the 

complex modulus G’(o) is given as (9) 

- 
- 

Lo 

G ’ ( o )  = i o  5 G(s)exp(-iws)ds 
0 

Assume that the relaxation function, G(s) has the form of stretch exponential, 

G(s)=Cexp(-(s/h)”) 3) 

where C, h, and p are constants 

Using the series reprtsentation of exponential function, and the definition of gamma function, the 
complex modulus G (0) corresponding to the stretched exponential relaxation can be formally 
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Introducing 

1 - P  - a  5 )  

the storage and the loss moduli generated by the stretched exponential relaxation function 3) are 
given as follows: 

7) 

It is clear that these series representations of the components of the complex modulus do not 
converge for all oe(0, m). However, by choosing a finite frequency subinterval oe(a, b) one can 
always find the values of parameters h, p, and C in such a way that the series in 6) and 7) will 
approximate, with the prescribed precision, G' and G '  on (a, b). This idea is applied in the next 
paragraph to one regular and one polymer modified asphalt. 

REGULAR ASPHALT MODIFIED BY SBS POLYMER 
Dynamic material functions of a regular asphalt 2001300 Pen grade have been dynamically tested 
at different temperatures and the master curves of G' and G" (ref. T=O "C) prepared by the time 
temperature shifting. The mentioned regular asphalt has been modified by SBS copolymer. It is 
known ( IO)  that SBS copolymer exhibits a rheological transition from Newtonian to non- 
Newtonian behavior at a region of higher temperature. In the low temperatures the SBS system 
is plastic with a yield stress. It is believed (10) that such a transition is generated by a transition 
of the structure from microphase-separated state to the homogeneous state. 

Again the dynamic material functions of this PMA (polymer modified asphalt) have been 
measured and the master curves of G and G" prepared. The shift factor a, for these master 
curves was fitted to Arrhenius and WLF forms. 

The domain of experimental master curves G' and G" for the regular 200/300 Pen grade asphalt, 
is log os[-5.6, 71 and we have found that the series representations 6) and 7) can be used for this 
sample if the domain is subdivided into three subdomains. These subdomains are: A = {log 
we[-5.6, l]}, B = {log o~[ - l ,  2.5]}, C = {log 0~[2 .5 ,  71). The given subdomains represent a 
minimum number o f  subintervals covering the domain of the master curve for regular asphalt 
200/300 Pen grade, in the sense that minimally three stretched exponential; relaxation functions 
3) are necessary for the description of the whole master curves G' and G". The parameters of the 
stretched exponentials in all three subdomains are: in A, a = 7.479, P = 0.0857, C = 4.075e+09; 
in B, a = 6.1826, P = 0.1346, C = 9.4056e+08; in C, a = 10.0824, p = 0.237, C = 4.231e+08 

The storage, G ,  and the loss, G", moduli were calculated according to Equations 6) and 7). In 
these calculations the sums of series were terminated when the absolute value o f  the next term 
was less than thus strictly speaking the calculated values of G and G" are approximations. 
The compositions of calculated G and G are compared with the experimental data (master 
curves at reference 1 = 0 "C)  in Figs. 1, 2. The high frequency (low temperature) behavior is 
better seen in Fig. 2. The graph of G" clearly shows the maximum of G". The high frequency 
behavior of G' is probably overestimated by the series approximation in the subdomain C. 
However, it is also possible that the last three experimental points of Fig. 1 represent the region 
which is difficult to access experimentally - these points are measured at T = -30 "C, i.e. roughly 
around the glass transition temperature (Ts = -27 "C). 

The domain of experimental master curves G' and G", for the PMA is log w ~ [ - 8 ,  7.41. The 
minimum number of subdomains, covering this domain in the sense of data fit to the least 
number of stretched exponentials, is four. The subdomains are: A= (log o~[-8, -2.811; B= {log 
o~[-2.8,3.5]}, -6= {log 0€[3.5, 5.41); 6= {log w>5.4). The last subdomain, 6, covers the 
interval of low temperatures (again around the Tg of the base asphalt 2001300) Pen grade, and the 
caution is in place in considering the experimental data in this region. Experimental data were 
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again fined to the stretched exponential relaxation, i.e. the series representation 6) and 7) were 
used in each subdomain. Parameters of the stretched exponentials in these subdomains are: in 
A ,  a = 4.369, p = 0.0792, C = 3.76e+07; in E, a = 7.931, p = 0.081, C =4.186e+09; in c, a = 

11.112, p = 0.2174, C = 3.92e+08; in B ,  a = 27.03, p = 0.3034, C = 3.02e+08. The 
compositions of calculated G’, and G are compared with the experimental data (master curves) 
in Figs. 3,4. It is clear that at highest frequencies (lowest temperatures) the fit is not as good as 

temperatures. 

! 
8 .  

I in frequencies log ox 6. Again one has to stress the experimental difficulties in this region of 

DISCUSSION 
The stretched exponential relaxation function seems to be able to generate reasonably accurate 
storage and loss moduli for both regular and polymer modified asphalts. The series 
representation 6) and 7) can be used for the estimates of G‘(o) and G”(o) on any finite 
subinterval of frequencies. It is clear from the results obtained in the previous paragraph that the 
parameters of the stretched exponential relaxation function depend on the temperature. Not 
surprisingly the “relaxation” time h is very low (order IO-” for regular asphalt, and order IO” for 
PMA) at the lowest reduced frequencies (highest temperatures) where asphalts have a Newtonian 
behavior. On the other hand, at high reduced frequencies (temperatures around Tg in the studied 
case) the value of h, in both neat and modified asphalts is of order 

There are now several mechanisms proposed for the stretched exponential (6),  one of the most 
interesting is the defect diffusion model (7). According to this model, mobile defects move 
randomly through the medium and generate local conformal abnormalities in the system. On 
leaving the site of such a local disturbance the defect will cause a disturbance at some other site 
of the medium. After some time, the neighbourhood of the disturbed “particle” will relax, as the 
system returns to equilibrium. Thus the migration of defects may cause a mechanical relaxation. 
If there is a finite concentration (c) of defects, the probability that the “particle” will be reached 
at time by one of the N defects in a volume N/c is given as (12). 

b(t) = exp(-cI(t)) 8) 

Here I(t) is the number of distinct “particles” attacked by a defect at time t. If each defect 
undergoes a random walk with the pausing-time distribution w(t) there are two important classes 
of V(t). In the first case the form of w is exponential 

v( t )  - exp(-kt), h = const. 9) 

After some time this becomes a classical diffusion which leads to Debye’s result (6), 
+(t) = exp(-t/h), in three-dimensional case. The second case are distributions with an inverse- 
power tail 

y( t ) -  t-(’+n), O < a < I 10) 

In this case 

ta in 3 dimensions 

td2 in 1 dimension 
Kt) - 

Substituting 11) into 8) one obtains the stretched exponential form. The defect diffusion model 
is based on the movement of defects. However, the nature of defects is not known, and many 
possibilities have been suggested. For example, it has been suggested that a mobile carbonate 
(CO,) bond is the “defect” in some high-impact resins, (13). In the case of studied asphalts one 
can see that the exponent p is of order at higher temperatures and almost four times larger at 
low temperatures (around T8 of the base asphalt). Thus the “defect” seems to move in a quasi- 
one-dimensional motion at higher temperatures and perform a three-dimensional walk at 
temperatures close to Tr 

In conclusion, it appears that the stretched exponential is important not only in theoretical 
analysis of complex systems, but can also be successfully used in direct modelling of the stress 
relaxation in such systems. Such modelling in crack sealants will be discussed elsewhere. 
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Figure 1. Regular asphalt, G’ 
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Figure 2. Regular asphalt, G”. 
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Figure 3. Polymer modified asphalt, G' 
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Figure 4. Polymer modified asphalt, G". 

1259 


